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SUMMARY i

— % This report is second in a series of literature reviews in which
hygrothermal effects on aerospace composite materials (CM) with polymeric
matrixes are examined. This report (Part II) deals primarily with the glass y
transition temperature and expansion properties due to temperature and k
moisture. The chapter on residual stresses is also included in this part as
these stresses are a direct ccnsequence of the expansion properties. Specific ;
fe heat, thermal conductivity and emittance are briefly mentioned in Chapter i
3.0, while properties connected with moisture absorption have been revnewed
extensively in Part I of the series.—~

Lo oo R S b S

Other reports in this series deal with the following topics:

Part I: Thermal and Moisture Diffusion

Part III: Mechanicel Properties 1

s Pert IV: Mechanical Properties 2

- Part V: Composite Structures and Joints

- Part VI: Numerical and Analytical Solutions

: f Part VII:  Summary of Conclusions and Recommendations

—
1

A complete list of references is included in the Appendix and the
numbers in the brackets appearing in the text refer to this list.

RESUME

Le présent rapport est le deuxiéme d’une série de dépouillements
bibliographiques concernant I'influence des effets hygrothermiques sur les
matériaux composites utilisés en aérospatiale. Cette Partie II porte principa-
lement sur la température de transformation vitreuse et la dilatation sous
I’effet de la chaleur et de I'humidité. Le chapitre sur les constraintes résidu-
aires figure dans cette partie puisqu’elles résultent directement de la dilatation.
La chaleur spécifique, la conductibilité thermique et le pouvoir émissif sont
traités briévement au chapitre 3.0, tandis que les propriétés découlant de
I'absorption d’humidité avaient fait 1’objet d’un examen détaillé dans la
Partie I de la série.

‘ V. 1-. - ‘ v
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Les autres rapports de la série portent sur les sui- ts suivants:

Partie I:  Diffusion de la chaleur et de I’humidité J
Partie III: Propriétés mécaniques 1 '
Partie IV: Propriétés mécaniques 2

Partie V: Structures et joints composites

Partie VI:  Solution numériquet et analytiques

Partie VII: Résumé des conclusions et recommandations

Une liste compléte des références est incluse en annexe et les
nombres entre parenthéses dans le texte se rapportent a cette liste.
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HYGROTHERMAL EFFECTS IN CONTINUOUS FIBRE REINFORCED COMPOSITES
PART I}: PHYSICAL PROPERTIES

1.0 INTRODUCTION

The second part of the series of literature revicws* is concentrated on three properties: the
glass transition temperature and expansions due to temperature and moisturs, The properties connected
with moisture absorption were dealt with extensively in Part I of the review.

Specific heat, thermal conduétivity and emittance have not received very much attention
from researchers in composites and therefore are only mentioned briefly.

Other properties may be affected by the absorption of moisture or heat but are considere«i
of secondary importance or trivial (i.e. effect on specific weight) and are not therefore addressed in

detail.

Material properties responsible for ultrasonic wave propagation were found to be affected
by moisture and hygrothermal degradation. Those interested in Non Destructive Testing (NDT) of
composites are referred to Kaelble and Dynesl!133. 155,95, 152} Ishai and Bar-Cohenl!!*#. 1391 and

Krizi 1801,

The changes in electrical properties may also be useful for NDT purposes as was shown by
Cotinaud et all63 1, Dewimillel371 (see Part I of review) and Kadotanil 1511,

The Appendix is a revised version of the bibliography for the whole series of reviews on
Hygrothermsl Effects on aerospace composites.

2.0 GLASS TRANSITION TEMPERATURE

At room temperature most polymer matrix materials are in a glassy state. On increasing the
temperature, the elastic moduli and viscosity decrease slowly until a point {s reached at which both
these quantities drop drastically within a temperature range of 2° to 5°C. Discontinuity in the change
of properties does not take place, however, the rates of change of various physical properties versus
temperature undergo iarge increases. Similar effects were observed for crystals and denoted as second
order transitions. However, in pclymers the derivative properties do not appear to be discontinuous as
in the case of crystals and to stress this difference, the use of the term glass transition temperature
(Tg) is preferable to second order transition temperaturet2151,

The transition from a glassy to rubbery state is observed as a drastic drop in the mechanical
properties of the matrix materials and is a ratural upper temperature limit for structural applications
of these materials. Glass transition temperature (Tg) is therefore one of the important composite

material properties.
2.1 Methods of Measurements
Glass transition is manifested when a rapid rate of change of various physicel and mechanical

properties is observed with a slight increase in temperature. As a consequence, many methods have
been used to measure the Tg. The mehods can be either static or dyramic.

Gnly polymer matrix continuous fibre reinforced composites are considersd (see introduction to Part I).
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Torsional braid analysis (TBA) is a commonly used dynamic method (Fig. 1) (ASTM2236-81).

The frequency and the rate of decay of free vibrations of a pendulum are monitored with changing
temperature. Transition temperature is recorded as a significa..t change in complex elastic shear modu-
lus or more precisely as a maximum in the logarithmic decrement,

Static methods are more popular and generally easier. They inciude dilatometry, columnar
loading (or linear thermal expansion method), differential thermal analysis and other methods. In
dilatometry, the coefficient of cubical thermal expansion is monitored. A rather abrupt change in the
value of the coefficient over a narrow temperature interval indicates the glass transition temperature,

The Tg values vary from test method to test method as the concept of second order transi-
tion is not precise. For this reason other tests were designed (i.e. Heat Distortion Temperature tests
(HDT), Vicat softening temperature using a penetration probe) and are used to establish tempersture
envelope of polymers and for qualitative comparisons. What separates them from methods used for Tg
measurement is that they do not measure any fundamental physical property. Data obtained from
those tests is especially vseful in applications where the factors of time, temnperature, method of
loading, and fiber stress are similar to those specified in that test | ASTM D648-72(78)1.

Very popular tests, the heat distortion temperature (HDT) tests can have several forms
(see ASTM D648-72(78) and ASTM D1637-61(76)). The HDT test, usually ir: the form of three
point flexural displacement under constant loading, is an empirical method and does not measure any
fundamental property. The temperature designated as HDT is arbitrarily chosen and therefore should
not be referred to as glass transition temperature but simply as KRDT. HDT tests may be useful in
qualitative comparison of materials,

Tajimal 283 ) compared results obtained using two different test methods. Materials tested
were 5209 epoxy and T300/5209 composites. For dry resin, the HDT was 139°C while Tg from dila-
tometry was 154°C. Sykes et all 281 | used TBA (Fig. 1) and HDT (Fig. 2) for the same T300/5209
composite. The difference between Tg from TBA and HDT was very pronounced for wet composites
(Fig. 3).

Carter et all S 2| suggested a practical method of defining a Tg value from a heat distortion
experiment (flexural). Their methed is demonstrated in Figure 4 and based on an equation derived
from a viscoelastic model of cross-linked polymer. The curves shown represent probe displacement
(6) vs temperature (T). The point of maximum curvature (T,, 8.) is found by visual inspection or
nunuerical analysis. The intersection between a line parellel to temperature axis at the distance of
3.60 5, and a tangent to the curve at (T, §.) gives Tg. This Tg value was in good agreement with
results obtained from loaded columnar expansion (where a change in the first derivative of expansion
curve is used as Tg). Carter et al designate the temperature of which this second order transition
takes place as T, rather than Tg.

it should be mentioned here that the loads used in measuring the Tg or HDT usuaily have to
be optimized for each material to increase sensitivity. The results of HDT or Tg measurement tests
are generally repeatable to better than 2°C. Reproductivity is somewhat lower, but for worst condi-
tions, should not exceed 10°C (ASTM D1637-61(76), D3418-82, D2236-81).

2.2 Glass Trensition Temperature in Composites and Neat Resins

Browning et all4 1] measured HDT of neat 3501-5 resin and AS/3501-5 composite. They
do nout make & distin.tion beiween HDT and Tg and refer to the measured softening point in deflec-
tion of their sample as Tg. The value ¢f HDT for the dry resin was 177°C as opposed tc 189°C for
the composite. However, Tajima and Wanamaker! 2831 worked with 5209 resin and T300/6209
composite, For these materials, the result of HDT and ‘T'g (dilatometry) tests were oppcsite to
Browning's. Both the HDT and T¢ ~f neat resin was higher then those for the composite in the dry
state. These seemed to indicate that che effective cross-link density in the matrix is less than that in
the neat vesin. In the wet state the situation was reversed and the Tg arnd HDT values of wet compo-
site were higher than those of wet resin (see Table 1).
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2.3 Effect of Moisture on Glass Transition Temperature

The effect of moisture on Tg and HDT of epoxies and their composites has been studied
extensively!8. 281. 41,42 211,214, 2201 Typical results are shown in Figure &. Even a small
moisture content will lower the Tg of these materials considerably. Carter and Kibler! *! ! rueasured the
effect of moisture on glass transition temperate for F178 polyimide resin. From Figure &, it can be
seen that the effect is similar to that observed in epoxies,

The lowering of Tg and HDT by moisture is observed regardless of the method «f ineasure.
ment. However, as McKaguel 2141 pointed out, the column toading method is better suited for wet
Tg measurement as the extension of the specimens core is measured. The surface is dried during the
experiment and shrinks which must have an effect on bending tests.

Browning et ali4!. 42] used Equation (1) suggested by Kelley and Bueche! ! ¢ 81 to predict
Tg of wet resin.

apvaGp + oy - Vp)T&l
TR = — (RY)
oV, + 0 (1- V)

where: a — expansion coefficient
\% — volume fraction
suf, -- denotes polymer
suf; — denotes diluent

This equation is based or {ree volume theory. Browning used a = a; - &, where ¢; and «, are the linear
expansion coefficients above and helow Tg respectively. Browning et al%\ad to assume the Tg of water
as 4°C. Their results correlated well with measurements of Tg (or rather HOT) for 3501-5 resin

(Fig. 7). '

Delasi and Whitesidel# | | modified Equation (1) by using specific volume of water values

calculated from swe'ling measurements. This modification gave gnod correlation, especially for neat
resins.

McKaguel*11. 2141 ohserved that measured Tg temperatures from loaded column measure-
ments are lower than those nredicted by Equation (1). He pointed out that good correlation was
obtained only for bending tests where drying of specimen surface affects the results. His modified
equation introduces a,, as a volumetric expansion coefficient of a polymer in the glassy state. Swelling
is also accounted for in his mcdified equation. The two models are compared in Figure 8.

Morgan and Mones! 2 201 simplified Kelley and Bueche's equation. Since the expansion coeffi-
cient oy ‘amorphous water’, was not known, it was assumed to be equal to op. The Tg of water was
taken between 137°K and 182°K and the results compared with experimentally determined Tg for
TGDDM-DDS epoxy-moisture system (see Fig. 9). The large discrepancy in results was attributed to
the fact that in free volume theory, the hydrogen bonding interaciions of active sites within epoxy
are not accounted for. Morgan and Mones suggested that the Kelley-Bueche equation should not be
used for predicting wet Tg in epoxies,

Carter and Kibler! S} proposed an entropy model for predicting glass transition tempera-
tures in wet resins and compusites. This model designates configurational entropy, rather then free
volume, as the temperature dependent function that determines this transition. Arbitrary assig .~ents
for Tg and « of water are avoided and hydrogen bonding is accounted for. After some simplify..g
assumptions, the foliowing Equation (£)\ is obtained:

Tgr = T&, [1- (R/MAC,) y(7)} (2)
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where:
1 1
yir) S rtn - + (1-1)fnh —
r 1-r
r = (MM
Tg(°K) —  glass transition temperature of material containing f grams of water per
gram of dry resin

Tg, (°K) —  Tg of dry resin
M,(g/mole) — effective formula weight of hydrogen bond site
AC, (cal/g°C) — jump in specific heat due to glass transition in dry resin
R — universal gas constant
M, = 18 g/mole —  formula weight of water

Carter and Kibler encountered difficulties in measuring AC, so a final cormnparison of the two models
was not possible at the time. For some materials, when parameters in Equation (1) are well chosen,
equally good correlation with exprrimental values may be obtained with both models. However, as
shown in Figure 6, for some resins Equation (2) gives much better correlation. The full potential of
this model will be realized when problems with ACp measurement are overcome.

When studying the relationships of Tg, peak thermal spike and moisture, McKaguel 2111
pointed out the importance of moisture distribution. In Figure 10, the two different moisture distri-
butions shown result in the same allover moisture content. However, wet Tg may be locally exceeded
leading to accelerated moisture absorption and deterioraiion of material (see Part I and Part 111 of the
review),

2.4 Conclusions

1) HDT is often referred to as Tg. This should be avoided as the two temperatures may be
substantially different.

2) Moisture significantly lowers the Tg and HDT of matrix resinst4!1.42.81,211,214,220,281},

3) HDT assessments of wet materials should not be based on flexural type testsi2141,

4) Theloadedcolumn expansion method seems to be beuler suited for wet Tg measurementi2141,

5) A study comparing tests in which a fundamental property is being measured and from which
Tg may be determined would be useful. At present it is difficult to relate results obtained
in various laboratories using various methods,

6) Of all the models used for predicting wet Tg of composites reviewed here, the entropy
model seems most promising. However, problems with some measur:ments, i.e. AC, will
have to be overcome before it becomes practicalls! 1,

3.0 THERMAL PROPERTIES — COEFFICIENT OF THERMAL EXPANSION
When considering thermal effects in solids, specific heat, thermal conductivity, emittance

and coefficient of thermal expansion (CTE) are the most often used properties. Recently, the first
three mentioned properties have not received much attention from researchers in composite materials.
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The methods of measuring of these properties are fairly well established and the ASTM standards
are good referances in this case. However, finding published values of these properties for specific
composites is not usually easy. For graphite/polyimide, notably, Campbell and Burleigh!4?} con-
ducted an extensive study of these properties and some results are shown in Figures 11, 12 and 13.

Christensen presented methods of predicting values of these properties for composite materials!® |
Chapter IX ),

The fourth of the above mentioned properties, namely the CTE, has been extensively
measured by various researchers and some uf their results will be discussed below, Matrix materials
generally have very diffexint CTE from the fibers. As the composites are cured at elevated temperature,
there is on cooling to the normal usage temperature, a complex stress state created due to this CTE
mismatch, These residual stresses may cause loss of dimensional stability or even failure of the inter-
face or matrix material. Anather reason for the interest in the CTE of composites, is that due to the
riegative CTE of the graphite fibers and the positive CTE of the resin matrices, laminates with practi-
cally zero CTE, within wide range of temperatures, may be made (e.g. graphite/epoxy antennae,
telescupes). Hertzi! **1 in Figure 14 gave good illustration of the advantage of composites for applica-
tions where stiffness, dimensional stability and weight are of primary concem.

Rogers, Yaies et al published a series of articles on the linear thermal expansion of com-
positesl 243, 324,328 326,327, 2421 Ap interferometric (Fizeau) method was used to measure the
changes of CTE within a temperature range of 90°K to 400°K (500°K). A large amount of data was
produced using different graphite fibers, orientations, fiber volume fractions, resin types and lay-ups.
The effects of matrix curing characteristics and fiber weave types on CTE were also investigated.
Materials used in these studies included HTS and HMS graphite fibers, ERLA 4617/m PC A, DLS 351/
BF; 400 and code 69 (Fathergill & Harvey Ltd) epoxy resins. CTE of neat resins, unidirectional and
multidirectional lay-ups were measured.

The results provide useful data which can be immediately applied. When these data were
compared with current predicting methods, generally good correlation were achieved. However, a
major drawback to the applicatior of these theories, is the lack of precise data on the CTE of fibers as
well as their transverse elastic properties. When appropriate values are assigned to these thermoelastic
constants, current techniques account well for fiber volumes (v;) in the range of 0.5 to 0.8 at room
temperature. Measurements have shown that the higher the fiber content v — the hig - is the tem-
perature at which resin softening effects on CTE are observed. Accuracy of predictive methods for
CTE of composites was improved when detailed data on the temperature dependence of CTE of the
neat resin had beer used.

Experience gained from the response of simple lay-ups to temperature change has enabled
the behavior of progressively more complex structures to be predicted with some degree of confidence
according to Yates et all 3261,

Recently, Parker et all2291] have expanded data on the CTE of graphite/epoxies by testing
Fibredux 914C resin both neat and reinforced with HTS fibers. The scatter for this system was higher
than for those previously tested by Rogers, Yates eta al. The averaged results are, however, fairly
representative for the graphite/epoxy systems. Some of these data are shown in Figures 15, 16 and
Table 2.

Wang et all 303 conducted a study of CTE of Modmor II graphite in an epoxy resin (unspe-
cified). They used static and creep tests to obtain data on the mechanical properties of fibers and
epoxy separately. This data was later used to calculate CTE of laminae and the results were compared
with experimental data (Fig. 17). Wang et al also made comparison between direct measurement and
co-ordinate transformation (Fig. 18). For a bidirectional laminate, a comparison was made between
direct measurement and lamination theory (Fig. 19). All theories used were linear elastic and generally
good correlation was obtained except for high temperatures where viscoelastic properties becom. more
pronounced. The results agree well with conclusions reached by Rogers, Yates et al. Parker et all 2291
also compared thecry with experiment for multidirectior.al laminates (Fig. 20). According to Parker,
the poor correlation for 0/t45° laminates was caused by the preserce of moisture in the specimens,
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Cairns and Adams! 45| messured the thermal expansicn for 3601-6 resin and its unidirec-
tional composites made with AS graphite und SZ glass fibers. The data were compared with results
>btrined from a micromechanical anaiysis based on finite element methods. The correlation was poor.
This was, according to Cains and Adams, mainly cavsid by the Jucd that trangreeen CTE of fibers was
not known (a sensitivity study of the model was unc.r*.ken, however, no synergi.tic effects were
considered).

Kabelkal! 3501 formulated a model for predicting the CTE of fabric reinforced composites.
Comparison between the model and experimental results (Fig. 21) show poor correlation. Kabelka
concluded that this should improve when the viscoelastic response of matrix material is included. In
a previously mentioned study, Rogers et all24 2] found that for fabric reinforced graphite/epoxies:

RO e -

~—  fiber tow densities piay a critical role in governing the average values of in plane CTE of
laminates,

TR TR - E

— the crimp in reinforcing fibers is a significant factor in controlling the temperature at which
resin softening effects becorne apparent in the out of plane thermal expansion behavior,

— laminate stacking may change the thermal expansion by as much as 100%.

: Camahort et all4 6 ] thermally cycled near zero CTE lamineates. A near zero CTE lay-up was

! designed from results obtained on unidirectional specimens and was found to be [0°,, £40°, £70°],.

. Cycling was severe as samples were alternately immersed in liguid nitrogen and boiling water. Materigls i
and corresponding results can be seen in Table 3. The CTE was measured over a range of temperatures

from - 1°C to 38°C. An increase of CTE was found to be caused by microcracking of the resin — the

3 angle plies ceased to centribute and the lamminate acted like a unidirectional one. The lower cure resin

system marked 339 (121°C cure) performed better than the 177°C cure systems, as did the hybrid

4 system where T300 plies made of woven graphite were added and these in effect acted as crack

stoppers.

CTE of graphite /polyimide systems used by Campbell and Burleigh(4 81 shuwed scatter
during teraperature changes. According to these authors, this was also caused by microcracking of the

r 'sin.

Tennyson! 286, 2871 studied the effect of six months of temperature cycling from 24°C to
93°C in vacuum (10~ 7 ~ 10-8 torr) on CTE. Over 30 cycles were applied during the whole test. Samples
used were four ply +0 symmetrically balanced laminates of graphite, boron or Kevlar in an epoxy
matrix. The results can be seen in Figures 22, 23 and 24. CTE predictions for laminates were calcu-
lated using unidirectional laminae properties in their respective environments. These are compared
with data in Figures 25 and 26. Very good correlation was achieved. From these results Tennyson
concluded that outgassing (mainly H, O) and microcracking significantly affects CTE. Removal of
moisture seems to increase CTE of +6 laminates (a similar observation was made by Parker({2291),

For 3501 epoxy, moisture seemed to have just the opposite etfect (Adamson!41). Dry
epoxy samples had CTE equal to 8.0 + 0.5 X 10-5°C-1" while a sample saturated (7.3% wt gain) at
74°C with moisture displayed CTE equal to 1.9 + 0.5 X 10-4°C-1. (Adamson measured volumetric
expansion.) Adamson describec ...s observations of thermal expansion and swelling of epoxies in terms
of free volume theory and pos. iated an equilibrium state existing between bound and unbound water
in the resin. As free volume is inversely proportional to temperature, so is the volume of unbound
water in the epoxy. As only bound water causes swelling it is iinportant that CTE measurements for
wet specimens allow for the time needed to reach equilibrium between bound and unbound water.
Adamson found that one hour was sufficient time for this equilibrium to be reached at 256°C, however,

8t 1°C 24 hours were needed.
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For applications where dimensional stability is of primery importance, two methods of
sealing the composites from moisture were suggested #t General Dynamics (Hertz!! 301), Both the
bonded aluminium foil and tir-indium eutectic ovelx a thin coat of copper proved to be effective
barriers up to 1500 hours of exposure, However, besides affecting the weiglit of the composite
{~ 0.13-0.21 g/in2?) the coatings affected the CTE. For unsealed GY'70 — <30 [(0/45/90/- 45)},
the CTE was ~0.017 X 10-6 “C-! (-15° + 24°C) and +0.02i X 19-6 °C-! (24" + 74°C). When sealed
with 0.02 mm single layer aluminium, the CTE changed to +0.0568 X 10-6 °C-1 and +0,089 X 10-6 °C-!
respectively.

: Useful data for CTE of composites at cryogenic temperatures can be found in References
1 {163 and 65).

E 4.0 MOISTURE EXPANSION OF COMPOSITES

The absorption of moisture into the composiie poses a problem of dimensional stability
very similar to the one caused by thermal expansion. Current polymer matrices absorb moisture and
expand (swell) as a result. Most fibers (glass, graphite, boron) do not seem to absorb moisture and
restrict the matrix expansion especially in the longitudinal direction of unidirectional lamina. An
3 internal stress state is thus created along with dimensional changes. Yet another stress state is created
when expansion of a lamina is restricted by adjacent plies in a multidirectional laminate. Since
moisture distribution through the thick.iess of a composite is generally not uniform, this type of
internal stress may be present even in unidirectional laminate [Part I of the review]. 3

=T

i

v By analogy to thermal effects, most theoretical prediction techniques developed for thermal i
3 expansion are applicable. Work by Marom and Cohnli2061 js a good example of the applicability using :
E analogies. Schapery’s theory was used there tc predict coefficients of swelling of single lamina parallel ;
and transverse to fibers (u; and u, ). Swelling of unidirectional laminae (E glass/Araldite F/HT 972 E

or ERL 2256 epoxy) was measured in plane every 15° from 0° to 90°. The results were compared ;

\

with two predictions, one based on Schapery’s theory, and the othe: based on measured u; and
i1 . In Figure 27, comparison is made between the results. Schapery’s equations should give better
correlation if wet properties of constituent materials (resin) are used,

Menges and Gitschner! 2! ¢ 1 also used this analogy and applied Schneiders equations. The
relations obtained between swelling strains and fiber volume fraction were used to produce the graph
shown as Figure 28.

In moisture expansion of polymeric composites, the most important problem is the expan-
sion of the matrix material. Shirrel and Halpinl26 2], in their review paper, compared experimental
data from Hertz, Browning and McKague with the theory based on the assumption of additivity of
volumes:

VDRY LAMINATE + VHzO = Swollen volume

Within the restrictions that the moisture distribution is uniform and the resin material isotropic, the
dilatational strain is: )

>
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In Figure 29 the correlation seems to be good and differences with respect to expansion
due to moisture among various epoxies are small.

However, results from more recently published experiments do not lend themselves to
interpolation using assumptions based on additivity of volumes (see Figs. 30, 31 and 32). Hahn and
Kiml!18] developed a micromechanics model in which the expansion of the resin takes place after
the voids are filled with absorbed moisture. For each sample, there is a threshold value of moisture
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concentration below which no expansion takes place. Ar.ove the threshold the expansion is linear with
moisture content. Hahn and Kim assumed that material behavior is elasiic and that swelling strains are
independent of temperature. Experiments did not quite agree with this model as some expansion
could be seen Lalo,. the threshold value (C,) in Figure 31,

Adamson!4 | used the concept of free volume to explain the thermal expansion and swelling
of cured epoxy resins (see Review Part I, page 15). The free volume is the difference between the
measured velume and the occupied volume. The occupied volume consists of mass volume plus the
vibrational volume. In the firsi stage of moisture absorption only a fraction of absorbed water becomes
Hund to the epoxy network and causes swelling. The rest of the absorbed moisture occupies the free
volume, The second stage of moisture absorption begins when the free volume iz completely filled
with water and all absorbed water becomes bound causing swelling. In this second stage, swelling is
equal to the volume of absorbed water. In the third stage of swelling observed by Adamson water
occupies free volume contained by micelles (highly cross-linked dense centers of generally less dense
resin) and swelling again is less than the volume of absorbed water. As the equilibrium between bound
and unbound water is inversely proportional to temperature (free volume changes with temperature,
Fig. 33), swelling is aiso dependent on temperature. For a given amount of water in the sample,
swelling will increase with an increase in temperature. With changes in temperature, it is very difficult
to separate the effect of swelling from the pure thermal expansion in an experiment.

5.0 CONCLUSIONS (Chapter 3.0 and 4.0)

1) There is a lack of data on the transverse properties of fibers which in turn limits usefulness
of theoretical predictions of CTE of composites.

2) Accuracy of predictive techniques for CTE of laminae are improved when the dependence
on temperature of the fiber properties and even more so, the resin matrix are included in
the analysis.

3) CTE of laminates can be predicted if physical properties of unidirectional laminae are
known.

4) The hydrothermal history of the laminate may have an effect on its CTE, (i.e. thermal
cycling which results in the microcracking of the resin matrix).

5) Moisture in the specimen complicates the measurement of CTE and in general, wet speci-
mens require longer time at temperature before any change in dimension is measured. Wet
composites bave different CTE than the dry ones.

6) Even very thin layers of coating (aluminium or other metal coating which serves as mois-
ture barrier) changes CTE of laminates significantly.

7) Swelling is significant in current polymeric composites It can be predicted with the same
expressions used for predicting the CTE. These predictions are improved when the wet
properties of resins are used,

8) Resin swelling seems to be a three stage process that can be best explained with a free
volume concept.

6.0 RESIDUAL STRESSES

The thermal and moisture expansion properties of fibers and matrices are such that internal
stress states are present in composites under general conditions. These residual stresses may be respon-
sible for both defects and dimensional instabilities of cured composite materials before any external
load is applied.
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6.1 Micromechanics

As described in previcis chapters, fibers and resins have greatly varying expansion coeffi-
cients. The cure temperature of resins which are o® interest here, is {ypicelly between 120°C and
180°C. Immedirtely after cure and before cool down, the resin is in a leathery state and any stresses
created at this svage will be relaxed almost instantly. During the cool down to room temperature, the
Tesin becomes more elastic and, owing to the mismatch of ex pansion coefficients and restraints pro-
vided by the fibers, an interna! scress state will result. Thistype of stress was studied in model materials
made of thick giass filaments embedded in birefringent resins (epoxies typically are birefringent mate-
rials). Recently, Cunningham et a)l7* | used this method and obtained photozlastic data using a
polarizing microscope. The principal stresses were obtained with an oblique incidence method. A plot
of loop stress around the fiber is shown in Figure 34. The maximum loop stresses at the surface of the
fiber were calculated to be approximaiely 100 MPa (tensile) while redial stresses were only 6MPu
(compression),

Adams and Milleri 2. 2! 8] conducted finite element inelastic analyses of hygrothermal
microstresses and their results generally agree well with Cunningham’s photoelastic investigation.
The magnitude of these microstresses was sufficient to cause yielding of the matrix. Hygrothermal
cycling was shown to change the state of residual microstresses with subsequent dimensional insta-
bility of laminae.

Menges and Gitschnert 2161 demonstrated yet another mechanism for the rise of residual
stresses in the transversc direction. In this direction, resin sweiling is hardiy restrained by the fibers,
yet stresses still huild up. Fiber distribution may be homogenecus or inhomogeneous (see i'ig. 35j.
For both types of distributions zones of high and low fihetr content may be identified and these will
have different swelling strains. As a result, local residual stresses are present, and as Menges and
Gatschnex estimated, may lead to microcracking of the resin in a glass/resin composite,

6.2 Macromechanics

Residual stresses have been observed in composite materials not only at the microscopic
level, but also at the macroscopic level in angle plied laminates or in unidirectional hybnds, These
stresses have been studied experimentally and anaiytically by numerous authors.

Chamis: 53 1 provides & gocd review of NASA Lewis Research Center activities and of NASA
sponsored research in this field. He pointed to four factors from whicih lamination residual stresses
(LRS) originate:

1) the differences in the ply CTE in the longitudinal (@, ) and in the transverse {«,, ) direc-
tion. a,, /o)y = 20 for fiber/resin laminae;

2) the difference in ply orientation angle (8) — there are no LRS in unidirectional laminates;
3) the difference between fabrication temperature and use temperature;
4) the ability of a ply to support stresses along its material axes.

Water is present in laminates under general usage conditions which implies, from the results
of the previous chapter and from literature which will be reviewed helow, that point one above should
be broadened to include the difference in moisture expansion, as well as CTE. However, gereral points
brought forward by Chamis are still true owing to the analogy hetween moisture and thermal effects.

The existence of LRS is evidenced by transply cracks and warpage of unsymmetric angle-
plied laminates before any mechanical load was applied to them, The transply crecks are chservad
when LRE exceed the ply transverse strength (typically 28-63 MPa)l53 |, Molcho and Ishail 2191
obsead these cracks in 4 graph.te/epoxy T300/56208 skin for a control surface. The original lay-up
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contained 0° and +45° plies and after curing, not only transverse but also interlaminar cracks were M
observed. The latter originated from the tips of transverse cracks. It is worth noting that they found &
uniform di;iribution of plies, as opposed to a lamped lav-up, to be preferable, as it resuited in less
gevere ci” 18,

Strain gauges have beer: employed in [.RS measurements. Danie), Liber and Chamis! 78|
embedded strain gauges during fabrication of laminates. Results for 0° plies of baron/epoxy [0, /+45°],
lamirate ate shown in Figure 36.

i Pagano and Hahn! 2281 ysed a simplier method of LRS measurement. They bonded gauges i
to laminates at RT and then heated them to cure temperature.

The most common method of measuring LRS is through deformation measurements of
unsymmetric lamiinates. Unsymmetric laminates warp due to the existence of LRS. This method is
however indirect as it is necessary to use lamination theory to obtain stress values corresponding to
the measured warpage.

TR N e TP

i Chamis in his review reported on use of linear elastic laminate theory for ply thermal
stresses (LRS caused by cure temperature being different then the use temperature). Effects of some
material variables were analyzed with the aid of this model. In Figure 37(c) the effect of the lamping
of plies in angle-plied laminate is shown and correlates well with the earlier mentioned findings of
Molcho and Ishai. The effect of fiber volume ply angle, and matrix modulus is shown in Figures 37(a),
(b) and 38.

Lee, Lewis and Sacher! ! 88. 1891 ysed [90°/0°/90°| glass/epoxy systems to study the effect
of maisture on their mechanical properties. First ply failure, in the tension test, results in a change :
in slope of the stress-strain curve. Lee et al calied this the yield point. They observed that yield strain i
was affected by residual strain (Fig. 39) and these in turn changed with the amount of moisture in the g
composite. They measured residuai stresses in symmetric laminate by the deply technique. When one
of the plies was removed, the laminate wareped and the stresses could be calculated. fi

3
i

Pagano and Hahn! 228}, Hahn!!! 9] and Hahn and Kim! ' 18] developed a linear elastic model
to analyze curing stresses, however, they used a temperature dependent elastic moduli. Measurements
of warpage in unsymmetric angle plied laminates were compared with predictions. The stress free
temperature (T, ) was observed to be below the curing temperature, For T300/56208 and Scotchply
1002 (glass/epoxy) it was 121°C as opposed to a cure temperature of 177°C. In transverse direction it
was found that the curing stresses may be more than 50% of UTS in this direction. For swelling, a
moisture threshold model was used and it was found that moisture obsorption may result in a stress
free laminate at room temperature (Fig. 40). Correlation of experimental data with calculated values
was not alwasys satisfactory.

The elastic model does not account for significant stress relaxation, especially near the Tg
of the resin. The lowering of the stress free temperature in a composite due to annealing, can readily
be explained on the basis of a viscoelastic model. Crossman, Warren and Pinolil 73] studied the rela-
tions between residual stresses and annealing time and temperature (see Fig. 41). For Shell 1031 resin !
(190°C cure) the residual stresses at room temperature were lowered by 25% or ~ 7 MPa after 16 hours
at 121°C. Moisture, it was concluded, by plasticizing the resin, further accelerates residual stress
relaxation. Crossman and Flaggs! 74 1011 compared results of a linear viscoelastic analysis of dimen-
sional changes in laminates with experimental data and the results of elastic analysis. The correlation
between viscoelastic analysis and experimental data (warping) was very good. The elastic modzl failed
especially when used to analyze 121°C cure material (GY70/CE339). The viscoelastic model supported
earlier observations (i.e. Crossman, Mauri and Warren! 69 1) that the viscoelastic stress relaxation during
complete moisture absorption-desorption cycle at constant temperature can lead to unrecoverable ;
dimensional changes and result in different residual stress state. Thus accelerated conditioning programs i
may result in a changed residual stress state. Crossman et all691] found that hygrothermal cycling 1
increased residual stresses in a T300/5209 unsymmetric laminate. Similar laminates made from )
I'300/6208 showed a H-10% loss of residual stress under the same thermal history. ]
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Hedrick and Whiteside! ! 28| demonstrated that choosing an appropriate cooling rate for
graphite/epoxy laminates (based on 3501 epoxy), may also reduce the residual stresses through relaxa-
tion. Stress relaxation was studied (Fig. 42) and different cooling rates from 177°C to 121°C were
investigated. In Table 4, a summary of photomicrographic examinations is given.

Haiper and Weitsman!® 2% | and Dougius and Weitsman{?4! postuisied that if residual stress
relaxation is possible, than there should be an oztimum cool down path fo a laminate. They used a
linear viscoelastic model to find this pati.. Experimental confirmation of their finding has not been
very successful so far, as specimens used were relatively thick and contained many transverse cracks
which obscureed the results (an AS-3502 system was used). Further experiments in this optimal

time-temperature path are ontinuing.

6.3 Conclusions

1)  The mismatch of thermal and moisture expansion of constituent materials or individual plies
in a laminate is responsible for build up of residual stress states. Residual stresses are usually

significant under normal usage conditions.

2) Residual stresses (or cure stresses) may cause transverse and interlaminar cracks in laminates
before any external load has been applied. These stresses may be reduced by taking advan-

tage of stress relaxation techniques.

3) Viscoelastic models seem to be better suited for studying residual stresses in composites.

4) When accele.ated hygrothermal conditioning programs are used, care should be taken, as a
residual stress state may result which would not be found under normal service conditions.

TABLE 1

GLASS TEMPERATUREI283]

M, HDT(°C)

Sample g/100g Penetration

5209 Dry 134
3.730 95

6-Ply Dry 109
1.236 90

12.Ply Dry 116
1.329 96

o had _ N ) L & ‘ ﬂ

Tg(°C)
Dilatometry

154
90

131
109

131
109
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TABLE 3

THERM AL CYCL/NG EFFECTS ON LONGITUDINAL CTE!48]

X Fiber Longitudinal CTE, uin./in.-°F
: Material Syste
E aterial System Volume, % As-Cured Thermally Cycled
HMS/934, U/D 65.6 -0.45 -0.35
HMS/3501, U/D 65.2 -0.35 -0.38
HMS/934, O/D 65.1 -0.10 -0.30
HMS/3501, O/D 69.5 -0.13 ~0.2¢
i HMS/339, O/D 60.6 -0.10 -0.12
5 Hybrid
] (HMS/3501 + T-300/934) 63.3 -0.13 -0.26

Note: U/D = unidirectional; O/D = oriented.

TABLE 4

SUMMARY OF PHOTOMICROGRAPHIC EXAMINATION OF Gr/Ep LAMINATES!128]

Cooling Rate No. Speci Total Area*
. Specimens ) Total No. Max. Crack
( 3500"‘;-‘7;?:00”' Examined Exf::lzned. of Cracks Length, in.
5t06 3 3.24 47 0.012 '
2.5 2 1.89 3 0.005
1 9 7.21 0 -

* Microscopic examination of sectioned sine wave spars and travelers (300 X to 500 X)
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400 (281}
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